题目内容

【题目】已知:如图,斜坡AP的坡度为1:2.4,坡长AP为26米,在坡顶A处的同一水平面上有一座古塔BC,在斜坡底P处测得该塔的塔顶B的仰角为45°,在坡顶A处测得该塔的塔顶B的仰角为76°.求:

(1)坡顶A到地面PQ的距离;
(2)古塔BC的高度(结果精确到1米).(参考数据:sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)

【答案】
(1)解:过点A作AH⊥PQ,垂足为点H.

∵斜坡AP的坡度为1:2.4,∴ =

设AH=5km,则PH=12km,

由勾股定理,得AP=13km.

∴13k=26m. 解得k=2.

∴AH=10m.

答:坡顶A到地面PQ的距离为10m.


(2)解:延长BC交PQ于点D.

∵BC⊥AC,AC∥PQ,

∴BD⊥PQ.

∴四边形AHDC是矩形,CD=AH=10,AC=DH.

∵∠BPD=45°,

∴PD=BD.

设BC=x,则x+10=24+DH.∴AC=DH=x﹣14.

在Rt△ABC中,tan76°= ,即 ≈4.0,

解得x= ,即x≈19,

答:古塔BC的高度约为19米.


【解析】(1)首先过点A作AH⊥PQ,垂足为H,接下来,依据斜坡AP的坡度为1:2.4,可求得AH,PH,AP的关系,从而可求得AP的长;
(2)设BC=x,首先利用矩形性质求出x+10=24+DH,再利用锐角三角函数的定义列方程求解即可

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网