题目内容

【题目】如图,两根旗杆间相距12m,某人从点B沿BA走向点A,一段时间后他到达点M,此时他仰望旗杆的顶点C和D,两次视线的夹角为90°,且CM=DM,已知旗杆AC的高为3m,该人的运动速度为1m/s,则这个人运动到点M所用时间是_______________

【答案】3秒;

【解析】

根据题意证明∠C=DMB,利用AAS证明△ACM≌△BMD,根据全等三角形的性质得到AC=BM=3m,再利用时间=路程÷速度加上即可.

解:∵∠CMD=90°,

∴∠CMA+DMB=90°,

又∵∠CAM=90°,

∴∠CMA+C=90°,

∴∠C=DMB

RtACMRtBMD中,

RtACMRtBMDAAS),

AC=BM=3m

∵该人的运动速度为1m/s

∴他到达点M时,运动时间为3÷1=3s).

故答案为3

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网