题目内容

【题目】如图,河的两岸l1与l2相互平行,A,B是l1上的两点,C,D是l2上的两点,某人在点A处测得∠CAB=90°,∠DAB=30°,再沿AB方向前进20米到达点E(点E在线段AB上),测得∠DEB=60°,求C、D两点间的距离.

【答案】解:过点D作l1的垂线,垂足为F,

∵∠DEB=60°,∠DAB=30°,

∴∠ADE=∠DEB﹣∠DAB=30°,

∴△ADE为等腰三角形,

∴DE=AE=20,

在Rt△DEF中,EF=DEcos60°=20× =10,

∵DF⊥AF,

∴∠DFB=90°,

∴AC∥DF,

由已知l1∥l2

∴CD∥AF,

∴四边形ACDF为矩形,CD=AF=AE+EF=30,

答:C、D两点间的距离为30m.


【解析】解直角三角形须把特殊角放到直角三角形中,因此须过点D作l1的垂线,构造直角三角形,由已知得△ADE为等腰三角形,得出DE=AE=20,在Rt△DEF中,EF=DEcos60°=20× 1 2 =10,进而算出C、D两点间的距离为30m.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网