题目内容
【题目】如图,已知AB是⊙O的直径,BD是⊙O的弦,延长BD到C,使DC=BD,连接AC,过点D作DE⊥AC,垂足为E.
(1)求证:AB=AC;
(2)求证:DE是⊙O的切线;
(3)若⊙O的半径为6,∠BAC=60°,则DE=________.
【答案】(1)见解析;(2)见解析;(3).
【解析】
(1)连接AD,由直径所对的圆周角度数及中点可证AD是BC的垂直平分线,根据线段垂直平分线的性质可得结论;
(2)连接OD,由中位线的性质可得OD∥AC,由平行的性质与切线的判定可证;
(3)易知是等边三角形,由等边三角形的性质可得CB长及度数,利用直角三角形30度角的性质及勾股定理可得结果.
(1)连接AD.
∵AB是⊙O的直径,
∴∠ADB=90°.
又∵DC=BD,
AD是BC的垂直平分线
∴AB=AC.
(2)连接OD.
∵DE⊥AC,
∴∠CED=90°.
∵O为AB中点,D为BC中点,
∴OD∥AC.
∴∠ODE=∠CED=90°.
∴DE是⊙O的切线.
(3)由(1)得
是等边三角形
在中,
根据勾股定理得
练习册系列答案
相关题目
【题目】近年来,“在初中数学教学候总使用计算器是否直接影响学生计算能力的发展”这一问题受到了广泛关注,为此,某校随机调查了n名学生对此问题的看法(看法分为三种:没有影响,影响不大,影响很大),并将调查结果 绘制成如下不完整的统计表和扇形统计图,根据统计图表提供的信息,解答下列问题:
n名学生对使用计算器影响计算能力的发展看法人数统计表
看法 | 没有影响 | 影响不大 | 影响很大 |
学生人数(人) | 40 | 60 | m |
(1)求n的值;
(2)统计表中的m= ;
(3)估计该校1800名学生中认为“影响很大”的学生人数.