题目内容
【题目】如图,Rt△ABC中,∠C=90o,BE是它的角平分线,D在AB边上,以DB为直径的半圆O经过点E.
(1)试说明:AC是圆O的切线;
(2)若∠A=30o,圆O的半径为4,求图中阴影部分的面积.
【答案】(1)见解析;(2)图中阴影部分的面积为π.
【解析】
(1)由OB=OE,利用等边对等角得到一对角相等,再由BE为角平分线得到一对角相等,等量代换得到一对内错角相等,利用内错角相等两直线平行得到OE与BC平行,利用两直线平行同位角相等得到OE⊥AC,即可得证;
(2)由∠A的度数求出∠AOE度数,利用30°直角三角形的性质求出OA的长,利用勾股定理求出AE的长,阴影部分面积=直角三角形AOE面积-扇形OED面积,求出即可.
解:(1)∵OB=OE,
∴∠BEO=∠EBO,
∵BE平分∠CBO,
∴∠EBO=∠CBE,
∴∠BEO=∠CBE,
∴EO∥BC,
∵∠C=90°,
∴∠AEO=∠C=90°,
则AC是圆O的切线;
(2)在Rt△AEO中,∠A=30°,OE=4,
∴OA=2OE=8,∠AOE=60°,
根据勾股定理得:AE=
则S阴影=S△AOE-S扇形EOD=
【题目】某学校对全体学生“新冠肺炎”疫情防控知识的掌握情况进行了线上测试,该测试共有道题,每题分,满分分,该校将七年级一班和二班的成绩进行整理,得到如下信息:
班级 | 平均数 | 中位数 | 众数 | 优秀(分以上为优秀) |
一班 | ||||
二班 |
请你结合图表中所给信息,解答下列问题:
(1)请直接写出,,的值;
(2)你认为哪个班对疫情防控知识掌握较好,请说明理由(选择两个角度说明推断的合理性)
【题目】如图,在中,点D是线段上的动点,将线段绕点D逆时针旋转90°得到线段,连接.若已知,设B,D两点间的距离为,A,D两点间的距离为,B,E两点间的距离为.
小明根据学习函数的经验,分别对函数,随自变量x的变化而变化的规律进行了探究
下面是小明的探究过程,请补全完整:
(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了,与x的几组对应值,如下表:(说明:补全表格时相关数值保留一位小数)
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
7.03 | 6.20 | 5.44 | 4.76 | 4.21 | 3.85 | 3.73 | 3.87 | 4.26 | |
a | 5.66 | 4.32 | b | 1.97 | 1.59 | 2.27 | 3.43 | 4.73 |
(2)在同一平面直角坐标系中,描出补全后的表中各组数值所对应的点,,并画出函数,的图象;
(3)结合函数图象,解决问题:
①当E在线段上时,的长度约为___________cm;
②当为等腰三角形时,的长度x约为___________cm.