题目内容
实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等. 如图1,一束光线m射到平面镜a上,被a反射后的光线为n,则入射光线m、反射光线n与平面镜a所夹的锐角∠1=∠2.
(1) 如图2,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b反射.若被b反射出的光线n与光线m平行,且∠1=50°,则∠2=_____°,∠3=_____°.
(2) 在(1)中m∥n,若∠1=55°,则∠3=______°;若∠1=40°,则∠3=______°.
(3) 由(1)、(2),请你猜想:当两平面镜a、b的夹角∠3=______°时,可以使任何射到平面镜a上的光线m,经过平面镜a、b的两次反射后,入射光线m与反射光线n平行.你能说明理由吗?
(1)100°,90°;(2)90°,90°;(3)90°,理由见解析.
解析试题分析:(1)根据入射角等于反射角得出∠1=∠4,∠5=∠7,求出∠6,根据平行线性质即可求出∠2,求出∠5,根据三角形南京和锻炼求出∠3即可;
(2)根据入射角等于反射角得出∠1=∠4,∠5=∠7,求出∠6,根据平行线性质即可求出∠2,求出∠5,根据三角形南京和锻炼求出∠3即可;
(3)求出∠4+∠5,求出∠1+∠4+∠5+∠7,即可求出∠2+∠6,根据平行线的判定推出即可.
试题解析:(1)如图:
∵∠1=50°,
∴∠4=∠1=50°,
∴∠6=180°-50°-50°=80°,
∵m∥n,
∴∠2+∠6=180°,
∴∠2=100°,
∴∠5=∠7=40°,
∴∠3=180°-50°-40°=90°,
(2)∵∠1=40°,
∴∠4=∠1=40°,
∴∠6=180°-40°-40°=100°,
∵m∥n,
∴∠2+∠6=180°,
∴∠2=80°,
∴∠5=∠7=50°,
∴∠3=180°-50°-40°=90°;
∵∠1=55°,
∴∠4=∠1=55°,
∴∠6=180°-55°-55°=70°,
∵m∥n,
∴∠2+∠6=180°,
∴∠2=110°,
∴∠5=∠7=35°,
∴∠3=180°-55°-35°=90°;
(3)当∠3=90°时,m∥n,
理由是:∵∠3=90°,
∴∠4+∠5=180°-90°=90°,
∵∠1=∠4,∠7=∠5,
∴∠1+∠4+∠5+∠7=2×90°=180°,
∴∠6+∠2=180°-(∠1+∠4)+180°-(∠5+∠7)=180°,
∴m∥n,
考点: 平行线的判定与性质.