题目内容
【题目】如图,Rt△ABC中,∠C=90°,AB=15,BC=9,点P,Q分别在BC,AC上,CP=3x,CQ=4x(0<x<3).把△PCQ绕点P旋转,得到△PDE,点D落在线段PQ上.
(1)求证:PQ∥AB;
(2)若点D在∠BAC的平分线上,求CP的长;
(3)若△PDE与△ABC重叠部分图形的周长为T,且12≤T≤16,求x的取值范围.
【答案】(1)证明见试题解析;(2)6;(3)1≤x≤.
【解析】
试题分析:(1)先由勾股定理求出AC的长,再由相似三角形的判定定理得出△PQC∽△BAC,得出∠CPQ=∠B,由此可得出结论;
(2)连接AD,由PQ∥AB可得∠ADQ=∠DAB,再由点D在∠BAC的平分线上,得到∠DAQ=∠DAB,故∠ADQ=∠DAQ,AQ=DQ.在Rt△CPQ中根据勾股定理可知,AQ=12﹣4x,故可得出x的值,进而得出结论;
(3)当点E在AB上时,根据等腰三角形的性质求出x的值,再分0<x≤;<x<3两种情况进行分类讨论.
试题解析:(1)∵在Rt△ABC中,AB=15,BC=9,∴AC===12.∵,,∴.∵∠C=∠C,∴△PQC∽△BAC,∴∠CPQ=∠B,∴PQ∥AB;
(2)连接AD,∵PQ∥AB,∴∠ADQ=∠DAB,∵点D在∠BAC的平分线上,∴∠DAQ=∠DAB,∴∠ADQ=∠DAQ,∴AQ=DQ,在Rt△CPQ中,PQ=5x,∵PD=PC=3x,∴DQ=2x.∵AQ=12﹣4x,∴12﹣4x=2x,解得x=2,∴CP=3x=6;
(3)当点E在AB上时,∵PQ∥AB,∴∠DPE=∠PEB.∵∠CPQ=∠DPE,∠CPQ=∠B,∴∠B=∠PEB,∴PB=PE=5x,∴3x+5x=9,解得x=.
①当0<x≤时,T=PD+DE+PE=3x+4x+5x=12x,此时0<T≤;
②当<x<3时,设PE交AB于点G,DE交AB于F,作GH⊥FQ,垂足为H,∴HG=DF,FG=DH,Rt△PHG∽Rt△PDE,∴,∵PG=PB=9﹣3x,∴,∴GH=(9﹣3x),PH=(9﹣3x),∴FG=DH=3x﹣(9﹣3x),∴T=PG+PD+DF+FG=(9﹣3x)+3x+(9﹣3x)+[3x﹣(9﹣3x)]=,此时,<T<18.∴当0<x<3时,T随x的增大而增大,∴T=12时,即12x=12,解得x=1;TA=16时,即=16,解得x=.∵12≤T≤16,∴x的取值范围是1≤x≤.