题目内容
阅读下列材料:
如图1,在四边形ABCD中,已知∠ACB=∠BAD=105°,∠ABC=∠ADC=45°.求证:CD=AB.
小刚是这样思考的:由已知可得,∠CAB=30°,∠DAC=75°,∠DCA=60°,∠ACB+∠DAC=180°,由求证及特殊角度数可联想到构造特殊三角形.即过点A作AE⊥AB交BC的延长线于点E,则AB=AE,∠E=∠D.
在△ADC与△CEA中,
∵
∴△ADC≌△CEA,
得CD=AE=AB.
请你参考小刚同学思考问题的方法,解决下面问题:
如图2,在四边形ABCD中,若∠ACB+∠CAD=180°,∠B=∠D,请问:CD与AB是否相等?若相等,请你给出证明;若不相等,请说明理由.
如图1,在四边形ABCD中,已知∠ACB=∠BAD=105°,∠ABC=∠ADC=45°.求证:CD=AB.
小刚是这样思考的:由已知可得,∠CAB=30°,∠DAC=75°,∠DCA=60°,∠ACB+∠DAC=180°,由求证及特殊角度数可联想到构造特殊三角形.即过点A作AE⊥AB交BC的延长线于点E,则AB=AE,∠E=∠D.
在△ADC与△CEA中,
∵
|
∴△ADC≌△CEA,
得CD=AE=AB.
请你参考小刚同学思考问题的方法,解决下面问题:
如图2,在四边形ABCD中,若∠ACB+∠CAD=180°,∠B=∠D,请问:CD与AB是否相等?若相等,请你给出证明;若不相等,请说明理由.
分析:作AE=AB交BC延长线于E点,则∠B=∠E,而∠B=∠D,得到∠D=∠E,由∠ACB+∠DAC=180°,∠ACB+∠ECA=180°可得到∠DAC=∠ECA,然后根据“AAS”可判断△DAC≌△ECA,根据全等的性质得CD=AE,于是有CD=AB.
解答:答:CD与AB相等.
证明如下:作AE=AB交BC延长线于E点,
∴∠B=∠E
∵∠B=∠D
∴∠D=∠E,
∵∠ACB+∠DAC=180°,∠ACB+∠ECA=180°,
∴∠DAC=∠ECA,
∵在△DAC和△ECA中,
,
∴△DAC≌△ECA (AAS),
∴CD=AE
∴CD=AB.
证明如下:作AE=AB交BC延长线于E点,
∴∠B=∠E
∵∠B=∠D
∴∠D=∠E,
∵∠ACB+∠DAC=180°,∠ACB+∠ECA=180°,
∴∠DAC=∠ECA,
∵在△DAC和△ECA中,
|
∴△DAC≌△ECA (AAS),
∴CD=AE
∴CD=AB.
点评:本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.
练习册系列答案
相关题目