题目内容
如图已知△ABC中,∠B和∠C外角平分线相交于点P.(1)若∠ABC=30°,∠ACB=70°,求∠BPC度数.
(2)若∠ABC=α,∠BPC=β,求∠ACB度数.
分析:(1)运用角平分线的知识列出等式求解即可.解答过程中要注意代入与之有关的等量关系.
(2)题意给出了∠ABC=α,∠BPC=β,所以就要找出这两个角与∠ACB与之相关的等量关系.
(2)题意给出了∠ABC=α,∠BPC=β,所以就要找出这两个角与∠ACB与之相关的等量关系.
解答:解:(1)∠BPC
=180°-(
∠EBC+
∠BCF)
=180°-
(∠EBC+∠BCF)
=180°-
(180°-∠ABC+180°-∠ACB)
=180°-
(180°-30°+180°-70°)
=50°;
(2)∠BPC=180°-
(180°-∠ABC+180°-∠ACB)
=
(∠ABC+∠ACB),
∵∠BPC=β,∠ABC=α,
∴β=
(α+∠ACB).
故∠ACB=2β-α.
=180°-(
1 |
2 |
1 |
2 |
=180°-
1 |
2 |
=180°-
1 |
2 |
=180°-
1 |
2 |
=50°;
(2)∠BPC=180°-
1 |
2 |
=
1 |
2 |
∵∠BPC=β,∠ABC=α,
∴β=
1 |
2 |
故∠ACB=2β-α.
点评:本题考查的是三角形内角和定理以及角平分线的知识.此类题的关键是找出与之相关的等量关系简化计算得出.
练习册系列答案
相关题目