ÌâÄ¿ÄÚÈÝ
£¨2012•¸ßÐÂÇøһģ£©ÒÑÖª¶þ´Îº¯ÊýµÄͼÏó¾¹ýA£¨2£¬0£©¡¢C£¨0£¬-12£©Á½µã£¬ÇÒ¶Ô³ÆÖáΪֱÏßx=4£¬É趥µãΪµãP£¬ÓëxÖáµÄÁíÒ»½»µãΪµãB£®
£¨1£©Çó¶þ´Îº¯ÊýµÄ½âÎöʽ¼°¶¥µãPµÄ×ø±ê£»
£¨2£©Èçͼ1£¬ÔÚÖ±Ïßy=-2xÉÏÊÇ·ñ´æÔÚµãD£¬Ê¹ËıßÐÎOPBDΪµÈÑüÌÝÐΣ¿Èô´æÔÚ£¬Çó³öµãDµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
£¨3£©Èçͼ2£¬µãMÊÇÏ߶ÎOPÉϵÄÒ»¸ö¶¯µã£¨O¡¢PÁ½µã³ýÍ⣩£¬ÒÔÿÃë
¸öµ¥Î»³¤¶ÈµÄËÙ¶ÈÓɵãPÏòµãOÔ˶¯£¬¹ýµãM×÷Ö±ÏßMN¡ÎxÖᣬ½»PBÓÚµãN£®½«¡÷PMNÑØÖ±ÏßMN¶ÔÕÛ£¬µÃµ½¡÷P1MN£®ÔÚ¶¯µãMµÄÔ˶¯¹ý³ÌÖУ¬Éè¡÷P1MNÓëÌÝÐÎOMNBµÄÖصþ²¿·ÖµÄÃæ»ýΪS£¬Ô˶¯Ê±¼äΪtÃ룮ÎÊS´æÔÚ×î´óÖµÂð£¿Èô´æÔÚ£¬Çó³öÕâ¸ö×î´óÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨1£©Çó¶þ´Îº¯ÊýµÄ½âÎöʽ¼°¶¥µãPµÄ×ø±ê£»
£¨2£©Èçͼ1£¬ÔÚÖ±Ïßy=-2xÉÏÊÇ·ñ´æÔÚµãD£¬Ê¹ËıßÐÎOPBDΪµÈÑüÌÝÐΣ¿Èô´æÔÚ£¬Çó³öµãDµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
£¨3£©Èçͼ2£¬µãMÊÇÏ߶ÎOPÉϵÄÒ»¸ö¶¯µã£¨O¡¢PÁ½µã³ýÍ⣩£¬ÒÔÿÃë
2 |
·ÖÎö£º£¨1£©Éè¶þ´Îº¯ÊýµÄ½âÎöʽΪy=ax2+bx+c£¬´ý¶¨ÏµÊý·¨Çó³öa¡¢bºÍcµÄÖµ£¬¼´¿ÉÇó³öÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©´æÔÚµãD£¬Ê¹ËıßÐÎOPBDΪµÈÑüÌÝÐΣ¬ÏÈÇó³öBµãµÄ×ø±ê£¬ÉèÖ±ÏßBPµÄ½âÎöʽΪy=kx+m£¬¸ù¾ÝÌâÒâÇó³öÖ±ÏߵĽâÎöʽ£¬ÉèD£¨x£¬-2x£©£¬ÔòBD2=£¨-2x£©2+£¨6-x£©2£¬ÈôËıßÐÎOPBDΪµÈÑüÌÝÐΣ¬Ôò£¨-2x£©2+£¨6-x£©2=32£¬½â³öxµÄÖµ£¬DµãµÄ×ø±ê¼´¿ÉÇó³ö£»
£¨3£©µ±0£¼t¡Ü2ʱ£¬ÓÃt±íʾ³öPH£¬MH£¬HN£¬ÀûÓöþ´Îº¯ÊýµÄÐÔÖÊÇó³ö´ËÇø¼äº¯ÊýµÄ×îÖµ£»µ±2£¼t£¼4ʱ£¬P1G=2t-4£¬P1H=t£¬¸ù¾ÝÈý½ÇÐÎÏàËÆ£¬Çó³öS¡÷P1EF=3t2-12t+12£¬ÁгöSºÍtµÄ¹Øϵʽ£¬Çó³öS×î´óÖµ£®
£¨2£©´æÔÚµãD£¬Ê¹ËıßÐÎOPBDΪµÈÑüÌÝÐΣ¬ÏÈÇó³öBµãµÄ×ø±ê£¬ÉèÖ±ÏßBPµÄ½âÎöʽΪy=kx+m£¬¸ù¾ÝÌâÒâÇó³öÖ±ÏߵĽâÎöʽ£¬ÉèD£¨x£¬-2x£©£¬ÔòBD2=£¨-2x£©2+£¨6-x£©2£¬ÈôËıßÐÎOPBDΪµÈÑüÌÝÐΣ¬Ôò£¨-2x£©2+£¨6-x£©2=32£¬½â³öxµÄÖµ£¬DµãµÄ×ø±ê¼´¿ÉÇó³ö£»
£¨3£©µ±0£¼t¡Ü2ʱ£¬ÓÃt±íʾ³öPH£¬MH£¬HN£¬ÀûÓöþ´Îº¯ÊýµÄÐÔÖÊÇó³ö´ËÇø¼äº¯ÊýµÄ×îÖµ£»µ±2£¼t£¼4ʱ£¬P1G=2t-4£¬P1H=t£¬¸ù¾ÝÈý½ÇÐÎÏàËÆ£¬Çó³öS¡÷P1EF=3t2-12t+12£¬ÁгöSºÍtµÄ¹Øϵʽ£¬Çó³öS×î´óÖµ£®
½â´ð£º½â£º£¨1£©Éè¶þ´Îº¯ÊýµÄ½âÎöʽΪy=ax2+bx+c£¬
ÓÉÌâÒâµÃ
£¬
½âµÃ
£¬
¹ÊÅ×ÎïÏߵĽâÎöʽΪy=-x2+8x-12£¬µãPµÄ×ø±êΪ£¨4£¬4£©£»
£¨2£©´æÔÚµãD£¬Ê¹ËıßÐÎOPBDΪµÈÑüÌÝÐΣ¬ÀíÓÉÈçÏ£º
µ±y=0ʱ£¬x2-8x+12=0£¬
Ôòx1=2£¬x2=6£¬
ÔòµãBµÄ×ø±êΪ£¨6£¬0£©£¬
ÉèÖ±ÏßBPµÄ½âÎöʽΪy=kx+m£¬
Ôò
£¬
½âµÃ
£¬
ÔòÖ±ÏßBPµÄ½âÎöʽΪy=-2x+12£¬
ÔòÖ±ÏßOD¡ÎBP£¬
¡ß¶¥µã×ø±êΪP£¨4£¬4£©£¬
¡àOP=4
£¬
ÉèD£¨x£¬-2x£©£¬ÔòBD2=£¨-2x£©2+£¨6-x£©2£¬
µ±BD=OPʱ£¬£¨-2x£©2+£¨6-x£©2=32£¬
½âµÃx1=
£¬x2=2£¬
µ±x2=2ʱ£¬OD=BP=2
£¬ËıßÐÎOPBDÊÇƽÐÐËıßÐΣ¬ÉáÈ¥£¬
µ±x=
ʱËıßÐÎOPBDΪµÈÑüÌÝÐΣ¬
¹Êµ±D£¨
£¬-
£©Ê±£¬ËıßÐÎOPBDΪµÈÑüÌÝÐΣ»
£¨3£©¢Ùµ±0£¼t¡Ü2ʱ£¬
¡ßÔ˶¯ËÙ¶ÈΪÿÃë
¸ö³¤¶Èµ¥Î»£¬Ô˶¯Ê±¼äΪtÃ룬ÔòMP=
t£¬
¡àPH=t£¬MH=t£¬HN=
t£¬
¡àMN=
t£¬
¡àS=
t•t•
=
t2£¬
µ±t=2ʱ£¬SÓÐ×î´óÖµ=3£¬
¢Úµ±2£¼t£¼4ʱ£¬P1G=2t-4£¬P1H=t£¬
¡ßMN¡ÎOB£¬
¡à¡÷P1EF¡×¡÷P1MN£¬
¡à
=£¨
£©2£¬
¡à
=£¨
£©2£¬
¡àS¡÷P1EF=3t2-12t+12
¡àS=
t2-£¨3t2-12t+12£©=-
£¨t-
£©2+4£¬
µ±t=
ʱ£¬SÓÐ×î´óÖµ=4£¬
ÒòΪ4£¾3£¬
¹ÊS´æÔÚ×î´óÖµ£¬SµÄ×î´óֵΪ4£®
ÓÉÌâÒâµÃ
|
½âµÃ
|
¹ÊÅ×ÎïÏߵĽâÎöʽΪy=-x2+8x-12£¬µãPµÄ×ø±êΪ£¨4£¬4£©£»
£¨2£©´æÔÚµãD£¬Ê¹ËıßÐÎOPBDΪµÈÑüÌÝÐΣ¬ÀíÓÉÈçÏ£º
µ±y=0ʱ£¬x2-8x+12=0£¬
Ôòx1=2£¬x2=6£¬
ÔòµãBµÄ×ø±êΪ£¨6£¬0£©£¬
ÉèÖ±ÏßBPµÄ½âÎöʽΪy=kx+m£¬
Ôò
|
½âµÃ
|
ÔòÖ±ÏßBPµÄ½âÎöʽΪy=-2x+12£¬
ÔòÖ±ÏßOD¡ÎBP£¬
¡ß¶¥µã×ø±êΪP£¨4£¬4£©£¬
¡àOP=4
2 |
ÉèD£¨x£¬-2x£©£¬ÔòBD2=£¨-2x£©2+£¨6-x£©2£¬
µ±BD=OPʱ£¬£¨-2x£©2+£¨6-x£©2=32£¬
½âµÃx1=
2 |
5 |
µ±x2=2ʱ£¬OD=BP=2
5 |
µ±x=
2 |
5 |
¹Êµ±D£¨
2 |
5 |
4 |
5 |
£¨3£©¢Ùµ±0£¼t¡Ü2ʱ£¬
¡ßÔ˶¯ËÙ¶ÈΪÿÃë
2 |
2 |
¡àPH=t£¬MH=t£¬HN=
1 |
2 |
¡àMN=
3 |
2 |
¡àS=
3 |
2 |
1 |
2 |
3 |
4 |
µ±t=2ʱ£¬SÓÐ×î´óÖµ=3£¬
¢Úµ±2£¼t£¼4ʱ£¬P1G=2t-4£¬P1H=t£¬
¡ßMN¡ÎOB£¬
¡à¡÷P1EF¡×¡÷P1MN£¬
¡à
S¡÷P1EF |
S¡÷P1MN |
P1G |
P1H |
¡à
S¡÷P1EF | ||
|
2t-4 |
t |
¡àS¡÷P1EF=3t2-12t+12
¡àS=
3 |
4 |
9 |
4 |
8 |
3 |
µ±t=
8 |
3 |
ÒòΪ4£¾3£¬
¹ÊS´æÔÚ×î´óÖµ£¬SµÄ×î´óֵΪ4£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²é¶þ´Îº¯ÊýµÄ×ÛºÏÌâµÄ֪ʶµã£¬±¾ÌâÉæ¼°µÄ֪ʶµãÓÐÅ×ÎïÏß½âÎöʽµÄÇ󷨣¬Å×ÎïÏ߶¥µã×ø±ê¼°¶Ô³ÆÖáµÄÇ󷨣¬µÚÈýÎÊÐèÒª½øÐзÖÀàÌÖÂÛ£¬´ËÌâÄѶȽϴó£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿