题目内容
如图所示,在菱形ABCD中,E、F分别为AB、AD上两点,AE=AF.
(1)求证:CE=CF;
(2)若∠ECF=60°,∠B=80°,试问BC=CE吗?请说明理由.
(1)求证:CE=CF;
(2)若∠ECF=60°,∠B=80°,试问BC=CE吗?请说明理由.
(1)证明:∵ABCD是菱形,
∴AB=AD,BC=CD,∠B=∠D,
∵AE=AF,
∴AB-AE=AD-AF,
∴BE=DF,(2分)
在△BCE与△DCF中,∵
,
∴△BCE≌△DCF,(3分)
∴CE=CF;(4分)
(2)结论是:BC=CE.(5分)
理由如下:
∵ABCD是菱形,∠B=80°,
∴∠A=100°,
∵AE=AF,
∴∠AEF=∠AFE=
=40°
由(1)知CE=CF,∠ECF=60°,
∴△CEF是等边三角形,
∴∠CEF=60°,
∴∠CEB=180°-60°-40°=80°,(6分)
∴∠B=∠CEB,
∴BC=CE.(8分)
∴AB=AD,BC=CD,∠B=∠D,
∵AE=AF,
∴AB-AE=AD-AF,
∴BE=DF,(2分)
在△BCE与△DCF中,∵
|
∴△BCE≌△DCF,(3分)
∴CE=CF;(4分)
(2)结论是:BC=CE.(5分)
理由如下:
∵ABCD是菱形,∠B=80°,
∴∠A=100°,
∵AE=AF,
∴∠AEF=∠AFE=
180°-100° |
2 |
由(1)知CE=CF,∠ECF=60°,
∴△CEF是等边三角形,
∴∠CEF=60°,
∴∠CEB=180°-60°-40°=80°,(6分)
∴∠B=∠CEB,
∴BC=CE.(8分)
练习册系列答案
相关题目