题目内容
【题目】如图1,小敏利用课余时间制作了一个脸盆架,图2是它的截面图,垂直放置的脸盆与架子的交点为A,B,AB=40cm,脸盆的最低点C到AB的距离为10cm,则该脸盆的半径为cm.
【答案】25
【解析】解;如图,设圆的圆心为O,连接OA,OC,OC与AB交于点D,设⊙O半径为R,
∵OC⊥AB,
∴AD=DB= AB=20,∠ADO=90°,
在RT△AOD中,∵OA2=OD2+AD2 ,
∴R2=202+(R﹣10)2 ,
∴R=25.
故答案为25.
设圆的圆心为O,连接OA,OC,OC与AB交于点D,设⊙O半径为R,在RT△AOD中利用勾股定理即可解决问题.本题考查垂径定理、勾股定理等知识,解题的关键是学会添加常用辅助线,利用勾股定理列方程解决问题,属于中考常考题型.
练习册系列答案
相关题目
【题目】为了解七年级学生上学期参加社会实践活动的情况,随机抽查A市七年级部分学生参加社会实践活动天数,并根据抽查结果制作了如下不完整的频数分布表和条形统计图.
A市七年级部分学生参加社会实践活动天数的频数分布表
天数 | 频数 | 频率 |
3 | 20 | 0.10 |
4 | 30 | 0.15 |
5 | 60 | 0.30 |
6 | a | 0.25 |
7 | 40 | 0.20 |
A市七年级部分学生参加社会实践活动天数的条形统计图
根据以上信息,解答下列问题;
(1)求出频数分布表中a的值,并补全条形统计图.
(2)A市有七年级学生20000人,请你估计该市七年级学生参加社会实践活动不少于5天的人数.