题目内容
【题目】已知:E是∠AOB的平分线上一点,EC⊥OA ,ED⊥OB ,垂足分别为C、D.求证:(1)∠ECD=∠EDC;(2)OE是CD的垂直平分线.
【答案】(1)证明见解析;(2)证明见解析.
【解析】(1)根据角平分线上的点到角的两边距离相等可得EC=DE,再根据等边对等角证明即可;
(2)利用“HL”证明Rt△OCE和Rt△ODE全等,根据全等三角形对应边相等可得OC=OD,然后根据等腰三角形三线合一证明.
证明:(1)∵E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,
∴EC=DE,
∴∠ECD=∠EDC;
(2)在Rt△OCE和Rt△ODE中,
,
∴Rt△OCE≌Rt△ODE(HL),
∴OC=OD,
又∵OE是∠AOB的平分线,
∴OE是CD的垂直平分线.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目