题目内容
【题目】如图,已知直线l1:y=x+3与x轴交于点A,与y轴交于点B,与直线l2:y=﹣ x交于点P.直线l3:y=﹣ x+4与x轴交于点C,与y轴交于点D,与直线l1交于点Q,与直线l2交于点R.
(1)点A的坐标是 , 点B的坐标是 , 点P的坐标是;
(2)将△POB沿y轴折叠后,点P的对应点为P′,试判断点P′是否在直线l3上,并说明理由;
(3)求△PQR的面积.
【答案】
(1)(﹣3,0);(0,3);(﹣2,1)
(2)解:点P在直线l3上
∵P(﹣2,1),且将△POB沿y轴折叠后,点P与点P关于y轴对称,
∴P(2,1),
当x=2时,代入y=﹣ x+4得y=﹣ ×2+4=1,
∴点P在直线l3上
(3)解:分别过点P作PE⊥x轴于F,过点Q作QF⊥x轴于F,过点R作RG⊥x轴于G,
由 得 ,
∴Q( , ),
由 得
∴R(4,﹣2),
对于y=﹣ x+4,则y=0得x= ,
∴C( ,0),
∴S△AQC= AC×QF= ×( +3)× = ,S△OCR= OCGR= × ×2= ,S△AOP= OAPE= ×3×1= ,
∴S△PQR=S△AQC+S△OCR﹣S△AOP= + ﹣ = .
【解析】解:(1)∵直线l1:y=x+3与x轴交于点A,与y轴交于点B,
∴令y=0,求得x=﹣3,令x=0,求得y=3,
∴A(﹣3,0)、B(0,3),
∵直线l1与直线l2y=﹣ x交于点P.
∴解 得 ,
∴P(﹣2,1),
所以答案是:(﹣3,0),(0,3),(﹣2,1);
【题目】某超市超市准备购进A、B两种品牌的书包共100个,已知两种书包的进价如下表所示,设购进A种书包x个,且所购进的两种书包能全部卖出,获得的总利润为y元.
品牌 | 购买个数(个) | 进价(元/个) | 售价(元/个) | 获利(元) |
A | x | 50 | 60 | __________ |
B | __________ | 40 | 55 | __________ |
(1)将表格的信息填写完整;
(2)求y关于x的函数表达式;
(3)如果购进两种书包的总费用不超过4500元且购进B种书包的数量不大于A种书包的3倍,那么超市如何进货才能获利最大?并求出最大利润.
【题目】一粒木质中国象棋棋子“車”,它的正面雕刻一个“車”字,它的反面是平的,将棋子从一定高度下抛,落地反弹后可能是“車”字面朝上,也可能是“車”字面朝下.由于棋子的两面不均匀,为了估计“車”字面朝上的概率,某实验小组做了棋子下抛实验,并把实验数据整理如下:
实验次数 | 20 | 40 | 60 | 80 | 100 | 120 | 140 | 160 |
“車”字面朝上的频数 | 14 | 28 | 38 | 47 | 52 | 66 | 78 | 88 |
相应的频率 | 0.7 | 0.7 | 0.63 | 0.59 | 0.52 | 0.55 | 0.56 | 0.55 |
(1)请将表中数据补充完整,并画出折线统计图中的剩余部分.
(2)如果实验继续进行下去,根据上表数据,这个实验的频率将接近于该事件发生的概率,请估计这个概率是多少?