题目内容

【题目】如图,将Rt△ABC绕直角顶点A逆时针旋转90°得到△ADE,BC的延长线交DE于F,连接BD,若BC=2EF,试证明△BED是等腰三角形.

【答案】见解析

【解析】

根据直角三角形的两锐角互余,以及对顶角相等,旋转的性质,即可证得的垂直平分线,据此即可证得.

证明:∵将Rt△ABC绕直角顶点A逆时针旋转90°得到△ADE,

∴DE=BC,∠ADF=∠ABC,

∵BC=2EF,

∴DF=EF,

∴DE=2EF,

∵在直角△ABC中,∠ABC+∠ACB=90°,

又∵∠ABC=∠ADE,

∴∠ACB+∠ADE=90°.

∵∠FCD=∠ACB,

∴∠FCD+∠ADE=90°,

∴∠CFD=90°,

∴BF⊥DE,

∵EF=FD,

∴BF垂直平分DE,

∴BD=BE,

∴△BDE是等腰三角形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网