题目内容
【题目】如图,将Rt△ABC绕直角顶点A逆时针旋转90°得到△ADE,BC的延长线交DE于F,连接BD,若BC=2EF,试证明△BED是等腰三角形.
【答案】见解析
【解析】
根据直角三角形的两锐角互余,以及对顶角相等,旋转的性质,即可证得是的垂直平分线,据此即可证得.
证明:∵将Rt△ABC绕直角顶点A逆时针旋转90°得到△ADE,
∴DE=BC,∠ADF=∠ABC,
∵BC=2EF,
∴DF=EF,
∴DE=2EF,
∵在直角△ABC中,∠ABC+∠ACB=90°,
又∵∠ABC=∠ADE,
∴∠ACB+∠ADE=90°.
∵∠FCD=∠ACB,
∴∠FCD+∠ADE=90°,
∴∠CFD=90°,
∴BF⊥DE,
∵EF=FD,
∴BF垂直平分DE,
∴BD=BE,
∴△BDE是等腰三角形.
练习册系列答案
相关题目