题目内容
【题目】已知,如图,∠B=∠C=90 ,M是BC的中点,DM平分∠ADC.
(1)若连接AM,则AM是否平分∠BAD?请你证明你的结论;
(2)线段DM与AM有怎样的位置关系?请说明理由.
【答案】(1)平分;(2)DM⊥AM
【解析】
试题分析:(1)过点M作ME⊥AD于点E,再根据角平分线的性质得到MC=ME,由M为BC的中点可得MC=MB即得ME=MB,再结合MB⊥AB,ME⊥AD即可证得结论;
(2)根据角平分线的性质可得∠ADM=∠ADC,∠DAM=∠BAD,由∠B=∠C=90可得AB//CD,即可得到∠ADC+∠BAD=180,再根据角平分线的性质求解即可.
(1)AM是平分∠BAD,
理由如下:过点M作ME⊥AD于点E
∵DM平分∠ADC且MC⊥ CD,ME⊥AD
∴MC=ME
∵M为BC的中点
∴MC=MB
∴ME=MB
∵MB⊥AB,ME⊥AD
∴AM平分∠BAD;
(2)DM⊥AM
理由如下:∵DM平分∠ADC
∴∠ADM=∠ADC
∵AM平分∠BAD
∴∠DAM=∠BAD
∵∠B=∠C=90
∴AB//CD
∴∠ADC+∠BAD=180
∴∠ADM+∠DAM=∠ADC+∠BAD=(∠ADC+∠BAD)=90
∴∠DMA=90
∴DM⊥AM.
练习册系列答案
相关题目