题目内容
【题目】(2016广西省贺州市第25题)如图,在△ABC中,E是AC边上的一点,且AE=AB,∠BAC=2∠CBE,以AB为直径作⊙O交AC于点D,交BE于点F.
(1)求证:BC是⊙O的切线;
(2)若AB=8,BC=6,求DE的长.
【答案】(1)、证明过程见解析;(2)、1.6
【解析】
试题分析:(1)、由AE=AB,可得∠ABE=90°﹣∠BAC,又由∠BAC=2∠CBE,可求得∠ABC=∠ABE+∠CBE=90°,继而证得结论;(2)、首先连接BD,易证得△ABD∽△ACB,然后由相似三角形的对应边成比例,求得答案.
试题解析:(1)、∵AE=AB, ∴△ABE是等腰三角形,
∴∠ABE=(180°﹣∠BAC=)=90°﹣∠BAC, ∵∠BAC=2∠CBE, ∴∠CBE=∠BAC,
∴∠ABC=∠ABE+∠CBE=(90°﹣∠BAC)+∠BAC=90°, 即AB⊥BC, ∴BC是⊙O的切线;
(2)、连接BD,∵AB是⊙O的直径, ∴∠ADB=90°, ∵∠ABC=90°, ∴∠ADB=∠ABC,
∵∠A=∠A, ∴△ABD∽△ACB, ∴=, ∵在Rt△ABC中,AB=8,BC=6, ∴AC==10,
∴, 解得:AD=6.4, ∵AE=AB=8, ∴DE=AE﹣AD=8﹣6.4=1.6.
练习册系列答案
相关题目