题目内容

如图,在△ABC中,AB=AC,∠BAD=28°,AD=AE,则∠EDC=
14°
14°
分析:可以设∠EDC=x,∠B=∠C=y,根据∠ADE=∠AED=x+y,∠ADC=∠B+∠BAD即可列出方程,从而求解.
解答:解:设∠EDC=x,∠B=∠C=y,
∠AED=∠EDC+∠C=x+y,
又因为AD=AE,所以∠ADE=∠AED=x+y,
则∠ADC=∠ADE+∠EDC=2x+y,
又因为∠ADC=∠B+∠BAD,
所以 2x+y=y+28,
解得x=14,
所以∠EDC的度数是14°.
故答案是:14°.
点评:本题主要考查了等腰三角形的性质,等边对等角.正确确定相等关系列出方程是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网