题目内容
如图,直线l切⊙O于点A,点P为直线l上一点,直线PO交⊙O于点C、B,点D在线段AP上,连接DB,且AD=DB.
(1)求证:DB为⊙O的切线.
(2)若AD=1,PB=BO,求弦AC的长.
(1)求证:DB为⊙O的切线.
(2)若AD=1,PB=BO,求弦AC的长.
(1)证明:连接OD;
∵PA为⊙O切线,
∴∠OAD=90°;
在△OAD和△OBD中,
,
∴△OAD≌△OBD,
∴∠OBD=∠OAD=90°,
∴OB⊥BD
∴DB为⊙O的切线
(2)在Rt△OAP中;
∵PB=OB=OA,
∴OP=2OA,
∴∠OPA=30°,
∴∠POA=60°=2∠C,
∴PD=2BD=2DA=2,
∴∠OPA=∠C=30°,
∴AC=AP=3.
∵PA为⊙O切线,
∴∠OAD=90°;
在△OAD和△OBD中,
|
∴△OAD≌△OBD,
∴∠OBD=∠OAD=90°,
∴OB⊥BD
∴DB为⊙O的切线
(2)在Rt△OAP中;
∵PB=OB=OA,
∴OP=2OA,
∴∠OPA=30°,
∴∠POA=60°=2∠C,
∴PD=2BD=2DA=2,
∴∠OPA=∠C=30°,
∴AC=AP=3.
练习册系列答案
相关题目