题目内容

在一次数学探究性学习活动中,某学习小组要制作一个圆锥体模型,操作规则是:在一块边长为16cm的正方形纸片上剪出一个扇形和一个圆,使得扇形围成圆锥的侧面时,圆恰好是该圆锥的底面.他们首先设计了如图所示的方案一,发现这种方案不可行,于是他们调整了扇形和圆的半径,设计了如图所示的方案二.(两个方案的图中,圆与正方形相邻两边及扇形的弧均相切.方案一中扇形的弧与正方形的两边相切)

(1)请说明方案一不可行的理由;

(2)判断方案二是否可行?若可行,请确定圆锥的母线长及其底面圆半径;若不可行,请说明理由.

解:(1)理由如下:

∵扇形的弧长=16×=8π,圆锥底面周长=2πr,∴圆的半径为4cm.

由于所给正方形纸片的对角线长为cm,而制作这样的圆锥实际需要正方形纸片的对角线长为cm,

∴方案一不可行.

     (2)方案二可行.求解过程如下:

设圆锥底面圆的半径为rcm,圆锥的母线长为Rcm,则

,  ①       .  ②   

由①②,可得

故所求圆锥的母线长为cm,底面圆的半径为cm.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网