题目内容
【题目】如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A等于( )
A.30°
B.40°
C.36°
D.45°
【答案】C
【解析】解:∵BD=BC=AD, ∴△ABD,△BCD为等腰三角形,
设∠A=∠ABD=x,则∠C=∠CDB=2x,
又∵AB=AC可知,
∴△ABC为等腰三角形,
∴∠ABC=∠C=2x,
在△ABC中,∠A+∠ABC+∠C=180°,
即x+2x+2x=180°,
解得x=36°,
即∠A=36°.
故选C.
由BD=BC=AD可知,△ABD,△BCD为等腰三角形,设∠A=∠ABD=x,则∠C=∠CDB=2x,又由AB=AC可知,△ABC为等腰三角形,则∠ABC=∠C=2x,在△ABC中,用内角和定理列方程求解.
练习册系列答案
相关题目