题目内容
【题目】如图,菱形ABCD的边长为2,∠DAB=60°,E为BC的中点,在对角线AC上存在一点P,使△PBE的周长最小,则△PBE的周长的最小值为 .
【答案】
+1
【解析】解:连结DE.
∵BE的长度固定,
∴要使△PBE的周长最小只需要PB+PE的长度最小即可,
∵四边形ABCD是菱形,
∴AC与BD互相垂直平分,
∴P′D=P′B,
∴PB+PE的最小长度为DE的长,
∵菱形ABCD的边长为2,E为BC的中点,∠DAB=60°,
∴△BCD是等边三角形,
又∵菱形ABCD的边长为2,
∴BD=2,BE=1,DE= ,
∴△PBE的最小周长=DE+BE= +1,
故答案为: +1.
连接BD,与AC的交点即为使△PBE的周长最小的点P;由菱形的性质得出∠BPC=90°,由直角三角形斜边上的中线性质得出PE=BE,证明△PBE是等边三角形,得出PB=BE=PE=1,即可得出结果.
练习册系列答案
相关题目