题目内容

【题目】如图,矩形ABCD中,AB=15cm,点E在AD上,且AE=9cm,连接EC,将矩形ABCD沿直线BE翻折,点A恰好落在EC上的点A′处,则A′C=cm.

【答案】8
【解析】解:∵四边形ABCD是矩形,

∴AB=CD=15cm,∠A=∠D=90°,AD∥BC,AD=BC,

∴∠DEC=∠A′CB,

由折叠的性质,得:A′B=AB=15cm,∠BA′E=∠A=90°,

∴A′B=CD,∠BA′C=∠D=90°,

在△A′BC和△DCE中,

∴△A′BC≌△DCE(AAS),

∴A′C=DE,

设A′C=xcm,则BC=AD=DE+AE=x+9(cm),

在Rt△A′BC中,BC2=A′B2+A′C2

即(x+9)2=x2+152

解得:x=8,

∴A′C=8cm.

所以答案是:8.

【考点精析】掌握翻折变换(折叠问题)是解答本题的根本,需要知道折叠是一种对称变换,它属于轴对称,对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和角相等.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网