题目内容

【题目】如图,已知函数x>0)的图象经过点AB,点A的坐标为(12).过点AACy轴,AC1(点C位于点A的下方),过点CCDx轴,与函数的图象交于点D,过点BBECD,垂足E在线段CD上,连接OCOD

1)求△OCD的面积;

2)当BEAC时,求CE的长.

【答案】1;(2.

【解析】试题分析:(1)根据函数x>0)的图象经过点A(12),求函数解析式,再有ACy轴,AC1求出C点坐标,然后根据CDx轴,求D点坐标,从而可求CD长,最后利用三角形面积公式求出OCD的面积.

2)通过BEAC,求得B点坐标,进而求得CE.

试题解析:解:(1函数x>0)的图象经过点A(12)

,即k=2.

∵AC∥y轴,AC1C的坐标为(11.

∵ CD∥x轴,点D在函数图像上,D的坐标为(21.

.

2BEACBE.

BECDB的纵坐标是B的横坐标是.

CE=.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网