题目内容
【题目】△ABC和△ECD都是等边三角形
(1)如图1,若B、C、D三点在一条直线上,求证:BE=AD;
(2)保持△ABC不动,将△ECD绕点C顺时针旋转,使∠ACE=90°(如图2),BC与DE有怎样的位置关系?说明理由.
【答案】(1)证明见解析;(2)BC垂直平分DE,理由见解析.
【解析】
试题(1)利用等边三角形的性质和已知条件证明△ACD≌△BCE即可;
(2)BC垂直平分DE,延长BC交DE于M,证明∠ECM=∠DCM,利用三线合一证明即可.
试题解析:∵△ABC和△ECD都是等边三角形,∴AC=BC,EC=DC,∠ACB=∠ECD=60°.
∴∠ACB+∠ACE=∠ECD+∠ACE,即∠ACD=∠BCE.
∴△ACD≌△BCE. ∴AD=BE.
(2)BC垂直平分DE,理由如下:
如图,延长BC交DE于M,
∵∠ACB=60°,∠ACE=90°,∴∠ECM=180°-∠ACB-∠ACE=30°.
∵∠DCM=∠ECD-∠ECM=30°,∴∠ECM=∠DCM.
∵△ECD是等边三角形,∴CM垂直平分DE,即BC垂直平分DE.
练习册系列答案
相关题目