题目内容
【题目】如图,在正方形中,边长为的等边三角形的顶点分别在和上,下列结论:,其中正确的序号是( )
A.①②④B.①②C.②③④D.①③④
【答案】A
【解析】
根据正方形的性质可得∠BAD=∠B=∠D=90°,AB=AD=BC=CD,然后等边三角形的性质可得AE=AF,∠EAF=60°,然后利用HL即可证出Rt△ABE≌Rt△ADF,从而证出BE=DF,∠BAE=∠DAF,即可判断①;先求出∠BAE,根据直角三角形的性质即可判断②;证出AE≠2BE,即可判断③;设正方形的边长为x,求出CE,最后利用勾股定理列出方程即可求出x,从而判断④.
解:∵四边形ABCD为正方形
∴∠BAD=∠B=∠D=90°,AB=AD=BC=CD
∵△AEF为等边三角形
∴AE=AF,∠EAF=60°
在Rt△ABE和Rt△ADF中
∴Rt△ABE≌Rt△ADF
∴BE=DF,∠BAE=∠DAF
∴BC-BE=CD-DF
∴CE=CF,故①正确;
∴∠BAE=∠DAF=(∠BAC-∠EAF)=15°
∴∠AEB=90°-∠BAE=75°,故②正确;
在Rt△ABE中,∠BAE≠30°
∴AE≠2BE
∴EF≠BE+DF,故③错误;
设正方形的边长为x,
∵CE=CF,∠C=90°,EF=2
∴△CEF为等腰直角三角形
∴∠CEF=45°
∴CE=
则BE=BC-CE=x-
在Rt△ABE中,AB2+BE2=AE2
∴x2+(x-)2=22
解得:x1=,x2=(不符合实际,舍去)
∴=,故④正确.
综上:正确的有①②④.
故选A.
练习册系列答案
相关题目