题目内容

【题目】如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC不动,△ADE绕点A旋转,连接BE、CD,F为BE的中点,连接AF.

(1)如图①,当∠BAE=90°时,求证:CD=2AF;
(2)当∠BAE≠90°时,(1)的结论是否成立?请结合图②说明理由.

【答案】
(1)

证明:如图①,

∵∠BAC+∠EAD=180°,∠BAE=90°,

∴∠DAC=90°,

在△ABE与△ACD中

∴△ABE≌△ACD(SAS),

∴CD=BE,

∵在Rt△ABE中,F为BE的中点,

∴BE=2AF,

∴CD=2AF.


(2)

成立,

证明:如图②,

延长EA交BC于G,在AG上截取AH=AD,

∵∠BAC+∠EAD=180°,

∴∠EAB+∠DAC=180°,

∵∠EAB+∠BAH=180°,

∴∠DAC=∠BAH,

在△ABH与△ACD中,

∴△ABH≌△ACD(SAS)

∴BH=DC,

∵AD=AE,AH=AD,

∴AE=AH,

∵EF=FB,

∴BH=2AF,

∴CD=2AF


【解析】(1)因为AF是直角三角形ABE的中线,所以BE=2AF,然后通过△ABE≌△ACD即可求得.(2)延长EA交BC于G,在AG上截取AH=AD,证出△ABH≌△ACD从而证得BH=CD,然后根据三角形的中位线等于底边的一半,求得BH=2AF,即可求得.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网