题目内容
【题目】如图,抛物线与x轴交于点A(﹣, 0),点B(2,0),与y轴交于点C(0,1),连接BC.
(1)求抛物线的解析式;
(2)N为抛物线上的一个动点,过点N作NP⊥x轴于点P,设点N的横坐标为t(﹣<t<2),求△ABN的面积s与t的函数解析式;
(3)若0<t<2且t≠0时,△OPN∽△COB,求点N的坐标.
【答案】(1)y=﹣x2+x+1;(2)S=﹣t2+t+;(3)点N的坐标为(1,2)
【解析】
(1)设抛物线的解析式为y=ax2+bx+c,然后利用待定系数法即可得;
(2)当﹣<t<2时,点N在x轴上方,则NP等于点N的纵坐标,求出AB的长,然后利用三角形面积公式即可得;
(3)根据相似三角形的性质可得PN=2PO,由于PN=﹣t2+t+1,PO=|t|=t,可得关于t的方程,解这个方程即可解决这个问题.
(1)设抛物线的解析式为y=ax2+bx+c,由题意可得: ,
解得:,
∴抛物线的函数关系式为y=﹣x2+x+1;
(2)当﹣<t<2时,yN>0,
∴NP=|yN|=yN=﹣t2+t+1,
∴S=ABPN
=×(2+)×(﹣t2+t+1)
=(﹣t2+t+1)
=﹣t2+t+;
(3)∵△OPN∽△COB,
∴,
∴,
∴PN=2PO,
当0<t<2时,PN=|yN|=yN=﹣t2+t+1,PO=|t|=t,
∴﹣t2+t+1=2t,
整理得:3t2﹣t﹣2=0,
解得:t1=﹣,t2=1.
∵﹣<0,0<1<2,
∴t=1,此时点N的坐标为(1,2),
故点N的坐标为(1,2).
【题目】股民王先生上周星期五买进某公司股票1000股,每股18元,本周该股票的涨跌情况如表(正数表示价格比前一天上涨,负数表示价格比前一天下跌,单位:元)
星期 | 一 | 二 | 三 | 四 | 五 |
每股涨跌 |
(1)星期三结束时,该股票每股多少元?
(2)该股票本周内每股的最高价和最低价分别是多少元?
【题目】在平面直角坐标系中,我们把横、纵坐标都是整数的点叫做整点.如图,已知⊙O的半径为5,则抛物线与该圆所围成的阴影部分(不包括边界)的整点个数是( )
A. 24 B. 23 C. 22 D. 21
【题目】某自行车厂一周计划生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产为正、减产为负):
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
增减 |
(1)根据记录可知前三天共生产______辆.
(2)产量最多的一天比产量最少的一天多生产_______辆.
(3)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣15元,那么该厂工人这一周的工资总额是多少?