题目内容
【题目】如图,在矩形ABCD中,E是AB边的中点,沿EC对折矩形ABCD,使B点落在点P处,折痕为EC,连结AP并延长AP交CD于F点,连结CP并延长CP交AD于Q点.给出以下结论:
①四边形AECF为平行四边形;
②∠PBA=∠APQ;
③△FPC为等腰三角形;
④△APB≌△EPC.
其中正确结论的个数为( )
A. 1 B. 2 C. 3 D. 4
【答案】B
【解析】①根据三角形内角和为180°易证∠PAB+∠PBA=90°,易证四边形AECF是平行四边形,即可解题;
②根据平角定义得:∠APQ+∠BPC=90°,由正方形可知每个内角都是直角,再由同角的余角相等,即可解题;
③根据平行线和翻折的性质得:∠FPC=∠PCE=∠BCE,∠FPC≠∠FCP,且∠PFC是钝角,△FPC不一定为等腰三角形;
④当BP=AD或△BPC是等边三角形时,△APB≌△FDA,即可解题.
①如图,EC,BP交于点G;
∵点P是点B关于直线EC的对称点,
∴EC垂直平分BP,
∴EP=EB,
∴∠EBP=∠EPB,
∵点E为AB中点,
∴AE=EB,
∴AE=EP,
∴∠PAB=∠PBA,
∵∠PAB+∠PBA+∠APB=180°,即∠PAB+∠PBA+∠APE+∠BPE=2(∠PAB+∠PBA)=180°,
∴∠PAB+∠PBA=90°,
∴AP⊥BP,
∴AF∥EC;
∵AE∥CF,
∴四边形AECF是平行四边形,
故①正确;
②∵∠APB=90°,
∴∠APQ+∠BPC=90°,
由折叠得:BC=PC,
∴∠BPC=∠PBC,
∵四边形ABCD是正方形,
∴∠ABC=∠ABP+∠PBC=90°,
∴∠ABP=∠APQ,
故②正确;
③∵AF∥EC,
∴∠FPC=∠PCE=∠BCE,
∵∠PFC是钝角,
当△BPC是等边三角形,即∠BCE=30°时,才有∠FPC=∠FCP,
如右图,△PCF不一定是等腰三角形,
故③不正确;
④∵AF=EC,AD=BC=PC,∠ADF=∠EPC=90°,
∴Rt△EPC≌△FDA(HL),
∵∠ADF=∠APB=90°,∠FAD=∠ABP,
当BP=AD或△BPC是等边三角形时,△APB≌△FDA,
∴△APB≌△EPC,
故④不正确;
其中正确结论有①②,2个,
故选:B.