题目内容
【题目】某家具商场计划购进某种餐桌、餐椅进行销售,有关信息如下表:
原进价(元/张) | 零售价(元/张) | 成套售价(元/套) | |
餐桌 | a | 270 | 500 |
餐椅 | b | 70 |
若购进3张餐桌18张餐椅需要1170元;若购进5张餐桌25张餐椅需要1750元.
(1)求表中a,b的值;
(2)若该商场购进餐椅的数量是餐桌数量的5倍还多20张,且餐桌和餐椅的总数量不超过200张.该商场计划将全部餐桌配套销售(一张餐桌和四张餐椅配成一套),其余餐椅以零售方式销售.设购进餐桌的数量为x(张),总利润为W(元),求W关于x的函数关系式,并求出总利润最大时的进货方案.
【答案】(1)a=150,b=40;(2)W=220x+600,总利润最大时的进货方案为:购进30张餐桌,170张餐椅.
【解析】
(1)根据“购进3张餐桌18张餐椅需要1170元;若购进5张餐桌25张餐椅需要1750元”,列二元一次方程组求解即可;
(2)根据“该商场购进餐椅的数量是餐桌数量的5倍还多20张,且餐桌和餐椅的总数量不超过200张”得出x的取值范围,根据成套卖出获得的利润加上单张餐椅的获利额得出利润函数,再根据一次函数的性质得何时取得最大利润及利润的最大值,同时也可以明确此时的购买方案.
(1)由题意得:
解得:
故a的值为150,b的值为40;
(2)
由题意得:
的值随x的增大而增大
因此,当时,总利润最大,最大值为:(元)
此时,
故W关于x的函数关系式为:,总利润最大时的进货方案为:购进30张餐桌,170张餐椅.
练习册系列答案
相关题目