题目内容
【题目】如图,在平面直角坐标系中,已知,将线段平移至,点在轴正半轴上,,且.连接,,,.
(1)写出点的坐标为 ;点的坐标为 ;
(2)当的面积是的面积的3倍时,求点的坐标;
(3)设,,,判断、、之间的数量关系,并说明理由.
【答案】(1),;(2)点D的坐标为或;(3)之间的数量关系,或,理由见解析.
【解析】
(1)由二次根式成立的条件可得a和b的值,由平移的性质确定BC∥OA,且BC=OA,可得结论;
(2)分点D在线段OA和在OA延长线两种情况进行计算;
(3)分点D在线段OA上时,α+β=θ和在OA延长线α-β=θ两种情况进行计算;
解:(1)∵,
∴a=2,b=3,
∴点C的坐标为(2,3),
∵A(4,0),
∴OA=BC=4,
由平移得:BC∥x轴,
∴B(6,3),
故答案为:,;
(2)设点D的坐标为
∵△ODC的面积是△ABD的面积的3倍
∴
∴
①如图1,当点D在线段OA上时,
由,得
解得
∴点D的坐标为
②如图2,当点D在OA得延长线上时,
由,得
解得
∴点D的坐标为
综上,点D的坐标为或.
(3)①如图1,当点D在线段OA上时,
过点D作DE∥AB,与CB交于点E
.由平移知OC∥AB,∴DE∥OC
∴
又
∴.
②如图2,当点D在OA得延长线上时,
过点D作DE∥AB,与CB得延长线交于点E
由平移知OC∥AB,∴DE∥OC
∴
又
∴.
综上,之间的数量关系,或.
练习册系列答案
相关题目