题目内容
【题目】如图,将矩形ABCD沿EF对折,点A1恰好落在CD边上的中点处,线段A1B1交BC于点G,若AB=6,AD=9,则CG的长度为______.
【答案】
【解析】
由折叠的性质可得AE=A1E,A1D=3=A1C,∠EA1G=90°,由勾股定理可得DE=4,通过证明△A1DE∽△CGA1,可得,可求CG的长.
解:如图,
∵四边形ABCD是矩形,
∴AB=CD=6,∠D=∠C=90°
∵将矩形ABCD沿EF对折,点A1恰好落在CD边上的中点处,
∴AE=A1E,A1D=3=A1C,∠EA1G=90°,
∵A1E2=DE2+A1D2,
∴(9﹣DE)2=DE2+9,
∴DE=4,
∵∠DEA1+∠DA1E=90°,∠EA1D+∠GA1C=90°,
∴∠DEA1=∠GA1C,∠D=∠C=90°
∴△A1DE∽△CGA1,
∴
∴,
∴GC=.
故答案为:
练习册系列答案
相关题目
【题目】已知函数y=y1y2,其中y1=+1,y2=x﹣1,请对该函数及其图象进行如下探究:
解析式探究:根据给定的条件,可以确定出该函数的解析式为:______.
函数图象探究:①根据解析式,完成下表:
x | ﹣4 | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | … |
y | ﹣9 | ﹣ | m | n | ﹣1 | ﹣ | … |
m=______,n=_____.
②根据表中数据,在如图所示的平面直角坐标系中描点,并画出当x≤0时的函数图象;
结合画出的函数图象,解决问题:
①若A(x1,y1)、B(x2,y2)为图象上的两点,满足x1<x2;则y1_____y2(用<、=、>填空).
②写出关于x的方程y1y2=﹣x+3的近似解(精确到0.1).