题目内容

【题目】如图,已知∠ABC=90°,D是直线AB上的点,AD=BC.

(1)如图1,过点A作AF⊥AB,并截取AF=BD,连接DC、DF、CF,判断△CDF的形状并证明;

(2)如图2,E是直线BC上一点,且CE=BD,直线AE、CD相交于点P,∠APD的度数是一个固定的值吗?若是,请求出它的度数;若不是,请说明理由.

【答案】(1)见解析

(2)∠APD=∠FCD=45°.

析】

试题分析:(1)利用SAS证明△AFD和△BDC全等,再利用全等三角形的性质得出FD=DC,即可判断三角形的形状;

(2)作AF⊥AB于A,使AF=BD,连结DF,CF,利用SAS证明△AFD和△BDC全等,再利用全等三角形的性质得出FD=DC,∠FDC=90°,即可得出∠FCD=∠APD=45°.

试题解析:(1)△CDF是等腰直角三角形,理由如下:

∵AF⊥AD,∠ABC=90°,∴∠FAD=∠DBC,

在△FAD与△DBC中,,∴△FAD≌△DBC(SAS),

∴FD=DC,∴△CDF是等腰三角形,∵△FAD≌△DBC,∴∠FDA=∠DCB,

∵∠BDC+∠DCB=90°,∴∠BDC+∠FDA=90°,

∴△CDF是等腰直角三角形;

(2)作AF⊥AB于A,使AF=BD,连结DF,CF,如图,∵AF⊥AD,∠ABC=90°,

∴∠FAD=∠DBC,在△FAD与△DBC中,,∴△FAD≌△DBC(SAS),

∴FD=DC,∴△CDF是等腰三角形,∵△FAD≌△DBC,∴∠FDA=∠DCB,

∵∠BDC+∠DCB=90°,∴∠BDC+∠FDA=90°,∴△CDF是等腰直角三角形,

∴∠FCD=45°,∵AF∥CE,且AF=CE,∴四边形AFCE是平行四边形,

∴AE∥CF,∴∠APD=∠FCD=45°.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网