题目内容

【题目】如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,下列结论:
①∠AED=90° ②∠ADE=∠CDE ③DE=BE ④AD=AB+CD,
四个结论中成立的是( )

A.①②④
B.①②③
C.②③④
D.①③

【答案】A
【解析】解:过E作EF⊥AD于F,如图,

∵AB⊥BC,AE平分∠BAD,

∴Rt△AEF≌Rt△AEB

∴BE=EF,AB=AF,∠AEF=∠AEB;

而点E是BC的中点,

∴EC=EF=BE,所以③错误;

∴Rt△EFD≌Rt△ECD,

∴DC=DF,∠FDE=∠CDE,所以②正确;

∴AD=AF+FD=AB+DC,所以④正确;

∴∠AED=∠AEF+∠FED= ∠BEC=90°,所以①正确.

所以答案是:A.

【考点精析】掌握角平分线的性质定理是解答本题的根本,需要知道定理1:在角的平分线上的点到这个角的两边的距离相等; 定理2:一个角的两边的距离相等的点,在这个角的平分线上.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网