题目内容
【题目】阅读以下材料:
对数的创始人是苏格兰数学家纳皮尔(J.Nplcr,1550-1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evlcr,1707-1783年)才发现指数与对数之间的联系.
对数的定义:一般地,若ax=N(a>0,a≠1),那么x叫做以a为底N的对数,记作:x=logaN.比如指数式24=16可以转化为4=log216,对数式2=log525可以转化为52=25.
我们根据对数的定义可得到对数的一个性质:loga(MN)=logaM+logaN(a>0,a≠1,M>0,N>0);理由如下:
设logaM=m,logaN=n,则M=am,N=an
∴MN=aman=am+n,由对数的定义得m+n=loga(MN)
又∵m+n=logaM+logaN
∴loga(MN)=logaM+logaN
解决以下问题:
(1)将指数43=64转化为对数式: .
(2)仿照上面的材料,试证明: =—(a>0,al,M>0,N>0).
(3) 拓展运用:计算log32+log36-log34=____.
【答案】(1)3=log464;;(2)见解析;(3)1
【解析】
(1)根据题意可以把指数式43=64写成对数式;
(2)先设logaM=m,logaN=n,根据对数的定义可表示为指数式为:M=am,N=an,计算的结果,同理由所给材料的证明过程可得结论;
(3)根据公式:loga(MN)=logaM+logaN和loga=logaM-logaN的逆用,将所求式子表示为:log3(2×6÷4),计算可得结论.
(1)由题意可得,指数式43=64写成对数式为:3=log464,
故答案为:3=log464;
(2)设logaM=m,logaN=n,则M=am,N=an,
∴==am-n,由对数的定义得m-n=loga,
又∵m-n=logaM-logaN,
∴loga=logaM-logaN(a>0,a≠1,M>0,N>0);
(3)log32+log36-log34,
=log3(2×6÷4),
=log33,
=1,
故答案为:1.