题目内容

【题目】如图所示,在ABCD中,点E,F在对角线BD上,且BE=DF,

求证:(1)AE=CF;(2)四边形AECF是平行四边形.

【答案】(1)证明见解析;(2)证明见解析.

【解析】试题分析:(1)根据平行四边形对边平行且相等的性质得到AB∥CDAB=CD,所以∠ABE=∠CDF,利用SAS即可判定△ABE≌△CDF,根据全等三角形的性质即可得结论;(2)根据全等三角形对应角相等得到∠AEB=∠CFD,所以它们的邻补角相等,根据内错角相等,两直线平行即可得证.

试题解析:

证明:(1)∵四边形ABCD是平行四边形,

AB=CD,ABCD,

∴∠ABE=CDF.

ABECDF中,

∴△ABE≌△CDF(SAS),

AE=CF.

(2)∵△ABE≌△CDF,

∴∠AEB=CFD,

∴∠AEF=CFE,

AECF,

AE=CF,

∴四边形AECF是平行四边形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网