题目内容
【题目】如图1,点E是正方形ABCD的边CD上一点(不与C、D重合),连接AE,过点A作AF⊥AE交CB的延长线于点F
(1)求证:AE=AF;
(2)连接EF,N为EF之中点,连接BN,求的值;
(3)以BF为边作正方形BFMH,如图2,CH与AF相交于点Q,当E在CD上运动(不与C、D重合),问∠CQD的大小是否发生变化?若不变,求其值;若变化,请指出其范围.
【答案】(1)见解析;(2);(3)不变,45°.
【解析】
(1)由四边形ABCD是正方形,得到AB=AD,∠ABC=∠BAD=∠D=90°,∠ABF=90°,因为∠FAE=90°,所以∠FAE-∠BAE=∠BAD-∠BAE,即;∠FAB=∠EAD,得到△ABF≌△DAE,求出AF=AE;
(2)取FC的中点N,连接MN,AM,因为点M是FE的中点,得到CE=2MN,由∠AKM=∠FKB,∠AMF=∠MNB=90°,得到△AKM∽△BKM,,因为∠AKB∠=MKB,所以△AFK∽△BKF,得到∠KBM=∠AFK=45°,∠MBN=45°,所以BM=MN,;
(3)过点D作DQ⊥PD交PC的延长线于Q,由四边形BFHG是正方形,得到BG=BF,所以△ABF≌△CBG,∠FAB=∠BCG,由∠AGP=∠CGB,得到∠APG=∠ABC=90°,因为∠ADC=∠PDQ=90°,得到∠ADP=∠QDC,由AB∥CD,得到∠DCQ=∠AGC,∠PAG+∠BAD=∠PAG+∠APG,即∠PAD=∠AGC=∠DCQ,得到△PAD≌△QCD(ASA),PD=DQ,∠DPQ=45°,得出∠APD=45°.
(1)证明:∵AF⊥AE,∠BAD=90°,
∴∠FAB=∠EAD,
在△FAB和△EAD中,
,
∴△FAB≌△EAD,
∴AE=AF;
(2)如图1,连接AN,作NM⊥BC于M,则NM∥CD,
又点N是FE的中点,
∴CE=2MN,
∵∠AKN=∠FKB,∠ANK=∠FBK=90°,
∴△AKN∽△FKB,
∴,
又∠AKF=∠NKB,
∴△AKF∽△NKB,
∴∠NBK=∠AFK=45°,
∴∠NBM=45°,
∴BN=MN,
∴;
(3)如图2,过点D作DR⊥QD交BC的延长线于R,
∵四边形BFMH是正方形,
∴BH=BF,
在△ABF与△CBH中,
,
∴△ABF≌△CBH,
∴∠BAF=∠BCH,又∠AHQ=∠CHB,
∴∠AQH=∠ABC=90°,
∵∠AHC=∠AQH+∠BAF,∠QAD=∠BAF+∠BAD,
∴∠AHC=∠QAD,
∵AB∥CD,
∴∠AHC=∠DCR,
∴∠DCR=∠QAD,
∵∠ADC=∠QDR=90°,
∴∠ADQ=∠CDR,
在△QAD和△DCR中,
,
∴△QAD≌△RCD,
∴DQ=DR,
∴∠CQD=45°.
【题目】某校准备在国庆节期间组织学生到泰山进行研学旅行,已知老师与学生一共25人参加此次研学旅行,购买门票共花费1700元,门票费用如表格所示,求参加研学旅行的老师和学生各有多少人?设老师有x人,学生有y人,则可列方程组为( )
景点 | 票价 | 开放时间 |
泰山门票 | 旺季:125元/人 淡季:100元/人 | 全天 |
说明:(1)旺季时间(2月~11月),淡季时间(12月-次年1月); (2)老年人(60岁~70岁)、学生、儿童(1.2米~1.4米)享受5折优惠; (3)教师、省部级劳模、英模、道德模范享受8折优惠; (4)现役军人、伤残军人、70岁以上老年人、残疾人,凭本人有效证件免费进山; (5)享受优惠的游客请出示本人有效证件。 |
A. B. C. D.