题目内容
【题目】已知,点P是正方形ABCD内的一点,连接PA,PB,PC.将△PAB绕点B顺时针旋转90°到△P′CB的位置(如图).
(1)设AB的长为a,PB的长为b(b<a),求△PAB旋转到△P′CB的过程中边PA所扫过区域(图中阴影部分)的面积;
(2)若PA=2,PB=4,∠APB=135°,求PC的长.
【答案】(1)(a2-b2);(2)6.
【解析】
试题分析:(1)依题意,将△P′CB逆时针旋转90°可与△PAB重合,此时阴影部分面积=扇形BAC的面积-扇形BPP'的面积,根据旋转的性质可知,两个扇形的中心角都是90°,可据此求出阴影部分的面积.
(2)连接PP',根据旋转的性质可知:BP=BP',旋转角∠PBP'=90°,则△PBP'是等腰直角三角形,∠BP'C=∠BPA=135°,∠PP'C=∠BP'C-∠BP'P=135°-45°=90°,可推出△PP'C是直角三角形,进而可根据勾股定理求出PC的长.
试题解析:(1)∵将△PAB绕点B顺时针旋转90°到△P′CB的位置,
∴△PAB≌△P'CB,
∴S△PAB=S△P'CB,
S阴影=S扇形BAC-S扇形BPP′=(a2-b2);
(2)连接PP′,根据旋转的性质可知:△APB≌△CP′B,
∴BP=BP′=4,P′C=PA=2,∠PBP′=90°,
∴△PBP'是等腰直角三角形,P'P2=PB2+P'B2=32;
又∵∠BP′C=∠BPA=135°,
∴∠PP′C=∠BP′C-∠BP′P=135°-45°=90°,即△PP′C是直角三角形.
PC==6.
练习册系列答案
相关题目