题目内容
【题目】如图所示,沿AE折叠矩形,点D恰好落在BC边上的点F处,已知AB=8cm,BC=10cm,求EC的长.
【答案】解:∵四边形ABCD为矩形, ∴AD=BC=10,AB=CD=8,
∵矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上的F处,
∴AF=AD=10,EF=DE,
在Rt△ABF中,∵BF= =6,
∴CF=BC﹣BF=10﹣6=4,
设CE=x,则DE=EF=8﹣x
在Rt△ECF中,∵CE2+FC2=EF2 ,
∴x2+42=(8﹣x)2 , 解得x=3,
即CE=3
【解析】先根据矩形的性质得AD=BC=10,AB=CD=8,再根据折叠的性质得AF=AD=10,EF=DE,在Rt△ABF中,利用勾股定理计算出BF=6,则CF=BC﹣BF=4,设CE=x,则DE=EF=8﹣x,然后在Rt△ECF中根据勾股定理得到x2+42=(8﹣x)2 , 再解方程即可得到CE的长.
【考点精析】解答此题的关键在于理解翻折变换(折叠问题)的相关知识,掌握折叠是一种对称变换,它属于轴对称,对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和角相等.
练习册系列答案
相关题目