题目内容
【题目】如图,在矩形ABCD中,AB=10,AD=6,E为BC上一点,把△CDE沿DE折叠,使点C落在AB边上的F处,则CE的长为_____.
【答案】
【解析】
设CE=x,则BE=6﹣x由折叠性质可知,EF=CE=x,DF=CD=AB=10,所以AF=8,BF=AB﹣AF=10﹣8=2,在Rt△BEF中,BE2+BF2=EF2,即(6﹣x)2+22=x2,解得x=.
解:设CE=x,则BE=6﹣x由折叠性质可知,EF=CE=x,DF=CD=AB=10,
在Rt△DAF中,AD=6,DF=10,
∴AF=8,
∴BF=AB﹣AF=10﹣8=2,
在Rt△BEF中,BE2+BF2=EF2,
即(6﹣x)2+22=x2,
解得x=,
故答案为.
练习册系列答案
相关题目
【题目】下列图形都是由同样大小的菱形按照一定规律组成的,请根据排列规律完成下列问题:
(1)填写下表:
图形序号 | 菱形个数个 |
| 3 |
| 7 |
| ______ |
| ______ |
|
|
(2)根据表中规律猜想,图n中菱形的个数用含n的式子表示,不用说理;
(3)是否存在一个图形恰好由91个菱形组成?若存在,求出图形的序号;若不存在,说明理由.