题目内容
【题目】如图,矩形ABCD中,AB= ,BC= ,点E在对角线BD上,且BE=1.8,连接AE并延长交DC于F,则 等于( )
A.
B.
C.
D.
【答案】A
【解析】解:∵四边形ABCD是矩形, ∴∠BAD=90°,又AB= ,BC= ,
∴BD= =3,
∵BE=1.8,
∴DE=3﹣1.8=1.2,
∵AB∥CD,
∴ = ,即 = ,
解得,DF= ,
则CF=CD﹣DF= ,
∴ = = ,
故选A.
【考点精析】掌握矩形的性质和相似三角形的判定与性质是解答本题的根本,需要知道矩形的四个角都是直角,矩形的对角线相等;相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方.
练习册系列答案
相关题目