题目内容
【题目】如图,在□ABCD中,CEAD于点E,且CB=CE,点F为CD边上的一点,CB=CF,连接BF交CE于点G.
(1)若,CF=,求CG的长;
(2)求证:AB=ED+CG
【答案】(1)CG=2;(2)证明见解析.
【解析】
(1)根据平行四边形的性质得到AD//BC,然后得到∠GBC=30°,利用tan∠GBC===,求得GC=2;
(2)延长EC到点H,连接BH,证得△HBC≌△DCE,根据各角之间的关系得到∠4=∠GBH,从而得到BH=GH,证得DC=ED+CG.
四边形ABCD是平行四边形,
AD//BC,
CEAD,
,
,
,
BC=CF ,
在RtBCG中,,
,
GC=2
(2)延长到点,使得,连接BH ,
,
,
,
,
,
,
,
,
,
【题目】我市启动了第二届“美丽港城,美在阅读”全民阅读活动,为了解市民每天的阅读时间情况,随机抽取了部分市民进行调查,根据调查结果绘制如下尚不完整的频数分布表:
阅读时间 | 0≤x<30 | 30≤x<60 | 60≤x<90 | x≥90 | 合计 |
频数 | 450 | 400 | 50 | ||
频率 | 0.4 | 0.1 | 1 |
(1)补全表格;
(2)将每天阅读时间不低于60min的市民称为“阅读爱好者”,若我市约有500万人,请估计我市能称为“阅读爱好者”的市民约有多少万人?
【题目】某公司为了解员工对“六五”普法知识的知晓情况,从本公司随机选取40名员工进行普法知识考查,对考查成绩进行统计(成绩均为整数,满分100分),并依据统计数据绘制了如下尚不完整的统计表.解答下列问题:
组别 | 分数段/分 | 频数/人数 | 频率 |
1 | 50.5~60.5 | 2 | a |
2 | 60.5~70.5 | 6 | 0.15 |
3 | 70.5~80.5 | b | c |
4 | 80.5~90.5 | 12 | 0.30 |
5 | 90.5~100.5 | 6 | 0.15 |
合计 | 40 | 1.00 |
(1)表中a= , b= , c=;
(2)请补全频数分布直方图;
(3)该公司共有员工3000人,若考查成绩80分以上(不含80分)为优秀,试估计该公司员工“六五”普法知识知晓程度达到优秀的人数.