题目内容
【题目】 如图,△ABC中,∠A=60°,AC>AB>2,点D,E分别在边AB,AC上,且BD=CE=2,连接DE,点M是DE的中点,点N是BC的中点,线段MN的长为______.
【答案】
【解析】
如图,作CH∥AB,连接DN,延长DN交CH于H,连接EH,作CJ⊥EH于J.首先证明CH=EC,∠ECH=120°,解直角三角形求出EH,利用三角形中位线定理即可解决问题.
解:如图,作CH∥AB,连接DN,延长DN交CH于H,连接EH,作CJ⊥EH于J.
∵BD∥CH,
∴∠B=∠NCH,
∵BN=CN,∠DNB=∠KNC,
∵△DNB≌△HNC(ASA),
∴BD=CH,DN=NH,
∵BD=EC=2,
∴EC=CH=2,
∵∠A+∠ACH=180°,∠A=60°,
∴∠ECH=120°,
∵CJ⊥EH,
∴EJ=JH=ECcos30°=,
∴EH=2EJ=2,
∵DM=ME,DN=NH,
∴MN=EH=.
故答案为.
练习册系列答案
相关题目
【题目】为落实“促民生、促经济”政策,某市玻璃制品销售公司今年1月份调整了职工的月工资分配方案,调整后月工资由基本保障工资和计件奖励工资两部分组成(计件奖励工资=销售每件的奖励金额×销售的件数).下表是甲、乙两位职工今年四月份的工资情况信息:
职工 | 甲 | 乙 |
月销售件数/件 | 200 | 180 |
月工资/元 | 1800 | 1700 |
试求工资分配方案调整后职工的月基本保障工资和销售每件产品的奖励金额各是多少元?