题目内容
【题目】将等腰直角三角形ABC(AB=AC,∠BAC=90°)和等腰直角三角形DEF(DE=DF,∠EDF=90°)按图1摆放,点D在BC边的中点上,点A在DE上.
(1)填空:AB与EF的位置关系是 ;
(2)△DEF绕点D按顺时针方向转动至图2所示位置时,DF,DE分别交AB,AC于点P,Q,求证:∠BPD+∠DQC=180°;
(3)如图2,在△DEF绕点D按顺时针方向转动过程中,始终点P不到达A点,△ABC的面积记为S1,四边形APDQ的面积记为S2,那么S1与S2之间是否存在不变的数量关系?若存在,请写出它们之间的数量关系并证明;若不存在,请说明理由.
【答案】(1)平行;(2)见解析;(3)存在,S1=2S2,理由见解析.
【解析】
(1)根据等腰直角三角形的性质和平行线的判定方法即可得到结论;
(2)根据等腰直角三角形的性质得到∠B=∠C=45°,再根据三角形的内角和即可得到结论;
(3)连接AD,根据等腰直角三角形的性质和余角的性质可得BD=CD=AD,∠B=∠CAD,∠BDP=∠ADQ,进而可根据ASA证明△BDP≌△ADQ,再根据全等三角形的性质即可得到结论.
解:(1)∵AB=AC,∠BAC=90°,∴∠ABD=∠C=45°,
∵DE=DF,∠EDF=90°,∴∠F=∠E=45°,
∴∠F=∠ ABD,∴AB∥EF;
故答案为:平行;
(2)∵AB=AC,∠BAC=90°,∴∠B=∠C=45°,
∵∠EDF=90°,∴∠BDP+∠CDQ=90°,
∴∠BPD+∠DQC=360°﹣∠B﹣∠C﹣∠BDP﹣∠CDQ=180°;
(3)S1与S2之间存在不变的数量关系:S1=2S2.
理由:连接AD,如图,∵AB=AC,AD⊥BC,
∴BD=CD=AD=BC,∠B=∠C=∠CAD=45°,
∵∠BDP+∠ADP=∠ADP+∠ADQ=90°,
∴∠BDP=∠ADQ,
∴△BDP≌△ADQ(ASA),
∴S△ABD=S△BPD+S△APD=S△ADQ+S△APD=S2,
又∵S△ADB=S1,
∴S1=2S2.