题目内容
【题目】小华在“科技创新大赛”中制作了一个创意台灯作品,现忽略支管的粗细,得到它的侧面简化结构图如图所示.已知台灯底部支架CD平行于水平面,FE⊥OE,GF⊥EF,台灯上部可绕点O旋转,OE=20cm,EF=20cm.
(1)如图1,若将台灯上部绕点O逆时针转动,当点G落在直线CD上时,测量得∠EOG=65°,求FG的长度(结果精确到0.1cm);
(2)将台灯由图1位置旋转到图2的位置,若此时F,O两点所在的直线恰好与CD垂直,求点F在旋转过程中所形成的弧的长度.(参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14,≈1.73,可使用科学计算器)
【答案】(1)FG的长度约为3.8cm.
(2)cm
【解析】
试题分析:(1)作GM⊥OE可得矩形EFGM,设FG=xcm,可知EF=GM=20cm,OM=(20﹣x)cm,根据tan∠EOG= 列方程可求得x的值;
(2)RT△EFO中求出OF的长及∠EOF的度数,由∠EOG度数可得旋转角∠FOF′度数,根据弧长公式计算可得.
试题解析:(1)如图,作GM⊥OE于点M,
∵FE⊥OE,GF⊥EF,
∴四边形EFGM为矩形,
设FG=xcm,
∴EF=GM=20cm,FG=EM=xcm,
∵OE=20cm,
∴OM=(20﹣x)cm,
在RT△OGM中,
∵∠EOG=65°,
∴tan∠EOG=,即=tan65°,
解得:x≈3.8cm;
故FG的长度约为3.8cm.
(2)连接OF,
在RT△EFO中,∵EF=20,EO=20,
∴FO==40,tan∠EOF= ==,
∴∠EOF=60°,
∴∠FOG=∠EOG﹣∠EOF=5°,
又∵∠GOF′=90°,
∴∠FOF′=85°,
∴点F在旋转过程中所形成的弧的长度为:=cm.