题目内容

【题目】如图:已知等边三角形ABC,D为AC边上的一动点,CD=nDA,连线段BD,M为线段BD上一点,∠AMD=60°,AM交BC于E.
(1)若n=1,则==
(2)若n=2,求证:BM=6DM;
(3)当n=时,M为BD中点.
(直接写结果,不要求证明)

【答案】(1)解:当n=1时,CD=DA,
∵△ABC是等边三角形,
∴BD⊥AC,∠BAC=60°,
∴∠ADM=90°,
又∵∠AMD=60°,
∴∠MAD=30°,
∴∠BAE=∠BAC﹣∠MAD=30°,即∠BAE=∠EAD,
∴AE为△ABC的中线,
=1;
在△AMD中,MD=AM,(30°角所对的直角边等于斜边的一半)
∵∠BAM=∠ABM=30°,
∴AM=BM,
=2.
(2)证明:∠AMD=∠ABD+∠BAE=60°
∠CAE+∠BAE=60°
∴∠ABD=∠CAE
又∵BA=CA,∠BAD=∠ACE=60°
∴△BAD≌△ACE(ASA)
∴AD=CE∴CD=BE
作CF∥BD交AE于F,
===①,==②,
∴①×②得==
∴BM=6DM.
(3)解:∵M为BD中点,
∴BM=MD,
∵△BAD≌△ACE(ASA)
∴AD=CE
∴CD=BE
∵△AMD∽△ACE,△BME∽△BCD
∴AD=③,DC=④,
③④得CD=AD,
∴n=
【解析】此题为考查三角形中线段的倍数关系,相关知识点的综合应用能力,解题关键在如何作辅助线.
(1)CD=nDA,当n=1时,CD=DA,据等边三角形ABC的三线合一,可以得出∠BDA=90°,由∠AMD=60°,可得∠EAD=30°,
又∠BAC=60°,可得∠BAE=30°,AE为∠BAC的角平分线.依据三线合一可得BE=EC.容易得AM=2MD,AM=BM.问题得到解决.
(2)若n=2,则CD=2DA,△ABC是等边三角形,∠AMD=60°,可证明△BAD≌△ACE,得AD=CE,CD=BE;作辅助线CF∥BD交AE于F,可得===①,==②,观察①②的乘积,可得BM、DM的数量关系.
(3)由M为BD中点,可知BM=MD.由∠AMD=60°,△ABC为等边三角形,可得△AMD∽△ACE,△BME∽△BCD,由相似三角形对应边成比例,可得AD=,DC=,运用比例的性质合理变形,问题可求.
【考点精析】本题主要考查了等边三角形的性质和平行线分线段成比例的相关知识点,需要掌握等边三角形的三个角都相等并且每个角都是60°;三条平行线截两条直线,所得的对应线段成比例才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网