题目内容
【题目】如图,AB是⊙O的弦,AB=4,过圆心O的直线垂直AB于点D,交⊙O于点C和点E,连接AC、BC、OB,cos∠ACB=,延长OE到点F,使EF=2OE.
(1)求⊙O的半径;
(2)求证:BF是⊙O的切线.
【答案】(1)(2)证明见解析
【解析】
解:(1)如图,连接OA,
∵直径CE⊥AB,∴AD=BD=2,。
∴∠ACE=∠BCE,∠AOE=∠BOE,
又∵∠AOB=2∠ACB,∴∠BOE=∠ACB。
又∵cos∠ACB=,∴cos∠BOD=,
在Rt△BOD中,设OD=x,则OB=3x,
∵OD2+BD2=OB2,∴x2+22=(3x)2,解得x=。
∴OB=3x=,即⊙O的半径为。
(2)证明:∵FE=2OE,∴OF=3OE=。∴。
又∵,∴。
又∵∠BOF=∠DOB,∴△OBF∽△ODB。∴∠OBF=∠ODB=90°。
∵OB是半径,∴BF是⊙O的切线。
(1)连接OA,由直径CE⊥AB,根据垂径定理得AD=BD=2,,由已知利用圆周角定理可得到∠BOE=∠ACB,可得到cos∠BOD=cos∠ACB=,在Rt△BOD中,设OD=x,则OB=3x,利用勾股定理可计算出x=,则OB=3x=。
(2)由于FE=2OE,则OF=3OE=,则,而,于是得到,根据相似三角形的判定即可得到△OBF∽△ODB,根据相似三角形的性质有∠OBF=∠ODB=90°,然后根据切线的判定定理即可得到结论。
【题目】学校开展“书香校园”活动以来,受到同学们的广泛关注,学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计表.学生借阅图书的次数统计表
借阅图书的次数 | 0次 | 1次 | 2次 | 3次 | 4次及以上 |
人数 | 7 | 13 | a | 10 | 3 |
请你根据统计图表中的信息,解答下列问题:
______,______.
该调查统计数据的中位数是______,众数是______.
请计算扇形统计图中“3次”所对应扇形的圆心角的度数;
若该校共有2000名学生,根据调查结果,估计该校学生在一周内借阅图书“4次及以上”的人数.