题目内容
【题目】在平面直角坐标系中,A(a,0),C(0,c)且满足:(a+6)2+=0,长方形ABCO在坐标系中(如图),点O为坐标系的原点.
(1)求点B的坐标.
(2)如图1,若点M从点A出发,以2个单位/秒的速度向右运动(不超过点O),点N从原点O出发,以1个单位/秒的速度向下运动(不超过点C),设M、N两点同时出发,在它们运动的过程中,四边形MBNO的面积是否发生变化?若不变,求其值;若变化,求变化的范围.
(3)如图2,E为x轴负半轴上一点,且∠CBE=∠CEB,F是x轴正半轴上一动点,∠ECF的平分线CD交BE的延长线于点D,在点F运动的过程中,请探究∠CFE与∠D的数量关系,并说明理由
【答案】(1)B(﹣6,﹣3);(2)四边形MBNO的面积不变;是定值9;(3)∠CFE=2∠D.
【解析】
(1)根据题意可得a=﹣6,c=﹣3,则可求A点,C点,B点坐标;(2)设M、N同时出发的时间为t,则S四边形MBNO=S长方形OABC﹣S△ABM﹣S△BCN=18﹣×2t×3﹣×6×(3﹣t)=9.与时间无关.即面积是定值,其值为9;(3)根据三角形内角和定理和三角形外角等于不相邻的两个内角的和,可求∠CFE与∠D的数量关系.
解:(1)∵(a+6)2+=0,
∴a=﹣6,c=﹣3
∴A(﹣6,0),C(0,﹣3)
∵四边形OABC是矩形
∴AO∥BC,AB∥OC,AB=OC=3,AO=BC=6
∴B(﹣6,﹣3)
(2)四边形MBNO的面积不变.
设M、N同时出发的时间为t,
则S四边形MBNO=S长方形OABC﹣S△ABM﹣S△BCN=18﹣×2t×3﹣×6×(3﹣t)=9.与时间无关.
∴在运动过程中面积不变.是定值9
(3)∠CFE=2∠D.
理由如下:如图
∵∠CBE=∠CEB
∴∠ECB=180°﹣2∠BEC
∵CD平分∠ECF
∴∠DCE=∠DCF
∵AF∥BC
∴∠F=180°﹣∠DCF﹣∠DCE﹣∠BCE=180°﹣2∠DCE﹣(180°﹣2∠BEC)
∴∠F=2∠BEC﹣2∠DCE
∵∠BEC=∠D+∠DCE
∴∠F=2(∠D+∠DCE)﹣2∠DCE
∴∠F=2∠D