题目内容
【题目】如图1,四边形ABCD中,AB∥CD,∠B=90°,AC=AD.动点P从点B出发沿折线B-A-D-C方向以1单位/秒的速度运动,在整个运动过程中,△BCP的面积S与运动时间t(秒)的函数图象如图2所示,则AD等于( )
A. 10B. C. 8D.
【答案】B
【解析】
当t=5时,点P到达A处,根据图象可知AB=5;当s=40时,点P到达点D处,根据三角形BCD的面积可求出BC的长,再利用勾股定理即可求解.
解:当t=5时,点P到达A处,根据图象可知AB=5,
过点A作AE⊥CD交CD于点E,则四边形ABCE为矩形,
∵AC=AD,
∴DE=CE=CD,
当s=40时,点P到达点D处,
则S=CDBC=(2AB)BC=5×BC=40,
∴BC=8,
∴AD=AC=.
故选:B.
练习册系列答案
相关题目