题目内容
【题目】如图,二次函数y=ax2﹣4x+c的图象经过坐标原点,与x轴交于点A(﹣4,0)
(1)求此二次函数的解析式,并求出抛物线的顶点坐标;
(2)在抛物线上存在点P,使△AOP的面积为10?求出点P的坐标.
【答案】(1)y=﹣x2﹣4x;(2)P坐标为(﹣5,﹣5),(1,﹣5).
【解析】(1)把原点与A坐标代入解析式求出a与c的值,即可确定出解析式;
(2)由A与O坐标求出AO的长,根据三角形AOP面积为10,利用面积公式求出P纵坐标的绝对值为5,即P纵坐标为5或-5,把y=5或y=-5代入抛物线解析式求出x的值,即可确定出P坐标.
解:(1)把(0,0)与(﹣4,0)代入得:,
解得:a=﹣1,c=0,
则抛物线解析式为y=﹣x2﹣4x;
(2)∵AO=4,S△AOP=10,
∴|yP纵坐标|=5,即yP纵坐标=5或yP纵坐标=﹣5,
把y=5代入抛物线解析式得:x2+4x+5=0,方程无解;
把y=﹣5代入抛物线解析式得:x2+4x﹣5=0,解得x=﹣5或x=1,
此时P坐标为(﹣5,﹣5),(1,﹣5).
练习册系列答案
相关题目